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Spectrum Truncation Power Iteration for Agnostic
Matrix Phase Retrieval

Lewis Liu, Songtao Lu, Tuo Zhao, and Zhaoran Wang

Abstract—Agnostic matrix phase retrieval (AMPR) is a
general low-rank matrix recovery problem given a set of noisy
high-dimensional data samples. To be specific, AMPR is targeting
at recovering an r-rank matrix M∗ ∈ Rd1×d2 as the parametric
component from n instantiations/samples of a semi-parametric
model y = f(〈M∗,X〉, ε), where the predictor matrix is denoted
as X ∈ Rd1×d2 , link function f(·, ε) is agnostic under some
mild distribution assumptions on X, and ε represents the
noise. In this paper, we formulate AMPR as a rank-restricted
largest eigenvalue problem by applying the second-order Stein’s
identity and propose a new spectrum truncation power iteration
(STPower) method to obtain the desired matrix efficiently. Also,
we show a favorable rank recovery result by adopting the
STPower method, i.e., a near-optimal statistical convergence
rate under some relatively general model assumption from a
wide range of applications. Extensive simulations verify our
theoretical analysis and showcase the strength of STPower
compared with the other existing counterparts.

Index Terms—Spectrum Truncation Power (STPower),
agnostic matrix phase retrieval (AMPR), first- and second-order
Stein’s identity, eigenvalue problem

I. INTRODUCTION

In many large-scale machine learning and signal processing
scenarios, it is required to describe the relationship between a
given response y ∈ R and corresponding data X ∈ Rd1×d2 by
estimating the potential parametric components M∗ ∈ Rd1×d2
of an underlying learning model. The following two facts
motivate us to recover parameter M∗ in the agnostic matrix
phase retrieval (AMPR) problem: i) the correlated information
among entries in X results in correlated columns (rows) of
M∗ [1]–[6]; ii) the knowledge of the nonparametric function
parts of the model is scarce. To be more specific, the AMPR
problem can be formulated as

y = f(〈M∗,X〉, ε), subject to rank(M∗) = r∗ ≤ r0, (I.1)

and ‖M∗‖F = 1, where X,M∗ ∈ Rd1×d2 , X follows a
general distribution with conditions specified later (mostly
sub-Gaussian chosen by the observer), ε denotes the zero-mean
random noise, and f(·, ε) is the nonparametric link function.
Note that f(·, ε) might be misspecified with the ground truth,
e.g., in some image signal measurements, it is hard to specify
whether the output quantity is the absolute value or square
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Quebec, Canada.

Songtao Lu is with the IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598, USA. (email: songtao@ibm.com)

Tuo Zhao is with the School of Industrial and Systems Engineering, Georgia
Tech, Atlanta, GA 30332, USA.

Zhaoran Wang is with the Department of Industrial Engineering and
Management Sciences, Northwestern University.

of the inner product between data X and parameter M∗. In
this model, it is postulated that ‖M∗‖F = 1 for identifiability
as its Frobenius norm can always be incorporated into the
nonparametric component. In addition, following [7], we only
require that there exists a mapping ψ : u 7→ E[f(U, ε)|U = u]
with respect to U = 〈M∗,X〉 so that ED2ψ(U) > 0, where
D2 is the second-order distributional derivative [8]. In practice,
matrix M∗ following (I.1) can be estimated under foregoing
conditions via sufficient samples (d1, d2 � r∗).

As a special case of this model, we are able to
obtain a widely used flexible form of single index model
(SIM) [9]–[11] with the s∗-sparse constraint by replacing the
matrix M∗,X by vectors β∗,x ∈ Rd as follows,

y = f(xTβ∗, ε), subject to | supp(β∗)| = s∗ ≤ s, (I.2)

with β∗ recovered from noisy high-dimensional environments.
The definition above shows the developmental aspect of our
idea from SIM. More specifically, by setting the link function
f(·, ε) to | · |2 : R→ R, we can attain the original generalized
phase retrieval (PR) problem which recovers signals β∗ of
interest from n moduli |〈β∗,xi〉|, i = 1, 2, ..., n measured
by n i.i.d. measurement vectors xi with some distribution
assumption [12]. On the other hand, as a line of work [13]–[15]
has developed algorithms and provided theoretical guarantees
of recovering a low-rank matrix from linear measurements,
generalizing such settings to agnostic link functions is another
key initial inspiration for our viewpoints. In this paper, we
will focus on model (I.1) with real inputs and measurements,
while the generalization of this model to the complex cases is
straightforward by dealing with the real and complex parts of
the variables separately.

A. Motivation

Motivating applications of retrieving low-rank matrix
parameter M∗ without any specific form of the link function
arise across a wide range of diverse problems. For example,
in low-rank matrix sensing problem [16], it is of interest
to estimate M∗ of the lowest rank from n observations
yi = Tr(M∗Xi) = 〈M∗,Xi〉,∀i ∈ n. For the widespread
generalized linear models [17], [18], the underlying signal
matrix is recovered through nonlinear link functions.

Therefore, it is desired to design an effective method
for matrix phase retrieval (MPR) with both computational
efficiency and statistical guarantees under general link
functions (i.e., agnostic nonparametric components). Related
methods for traditional phase retrieval and SIM have been well
developed, where the corresponding theoretical guarantees
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heavily depend on specific structures of the problems, e.g.,
assumptions/constraints on f(·, ε) and X. In the vector cases,
previous works can be extended to solve agnostic phase
retrieval problem in the case that the estimated vector is
sparse. A direct way to estimate β∗ is using the nonlinear
least squares regression [19] in a nonconvex optimization
regime. Deriving optimal estimator via convex relaxation was
proposed in [20] under a sub-Gaussian assumption, while the
strategy is only valid for a specific form of f(·, ε). Another
line of gradient descent based work follows seminal insights
as Wirtinger Flow (WF) in [21]–[23], where thresholded
and truncated Wirtinger Flow are applied and it has been
shown that both of them can achieve near-optimal statistical
accuracy respectively.

However, these works are unable to be applied to matrices
directly. Although a low-rank matrix recovery problem via
nonlinear link functions is considered in [18], the approach
is confined within some specific properties of f(·, ε) such
as differentiability and monotonicity. The applications of
other gradient-based methods, e.g., factorized gradient
descent (FGD), multiple invocations of exact singular value
decompositions (SVDs) [24] are also limited in practice
due to the similar issues. With respect to a recent setting
for low-rank matrix retrieval, a more generic formulation
was considered in [12] by projecting the magnitude of each
column in M∗ separately and the corresponding algorithm is
able to recover the ground truth in a near-optimal rate, but the
link function considered in this work is specified. Therefore,
the results are hard to be extended to general/agnostic cases.

To summarize, the existing works have either a lack of
general assumptions on f(·, ε) or an absence of generalizing
the sparsity of vectors to the sparsity of the spectrum (i.e., low
rank) of matrices with provable guarantees. To overcome these
defects, a spectrum truncation power (STPower) algorithm
is proposed and its corresponding convergence behaviors
are quantified in this paper. To the best of our knowledge,
it is the first algorithm that solves AMPR with a linear
convergence rate for the optimization error of problem (I.1)
and near-optimal statistical rate.

B. Related Work

There is a considerably extensive works of studying phase
retrieval model and SIM in the areas of machine learning [7],
applied mathematics [16], [19], signal processing [12], [20],
[25], etc. Here, we only survey the works that are most
related. Recently, compared with the low-dimensional and
non-sparse phase retrieval problems studied in [21], [26],
[27], high-dimensional sparse signal recovery has sparkled
significant attention in massive data processing. By adopting
existing optimization methods, recent works [28], [29]
incorporate the sparsity of the lifted matrix β∗β∗> to design
`1-regularized phase retrieval by semidefinite programming
and obtain reasonable good solutions by applying iterative
efficient algorithms. For example, AltMinPhase [30] first
performs the spectral initialization and then uses the
alternating minimization algorithm to solve the sparse PR
problem.

One class of the most popular algorithms proposed in [23],
[31]–[33] basically is to truncate both the gradient flow by
keeping the first k largest absolute values at each iterate so
that an effective descent direction can be found on the sparse
support. For example, thresholded wirtinger flow (TWF) [22]
restricts the value of updated estimator by a threshold function
based on the WF method. The main idea of these algorithms is
just to keep the sparsity of the target vector. Similar truncation
operations have been extensively developed in [34], where
the truncation methods for solving PR problems are analyzed
in [22] and [23] respectively.

Another line of works in the SIM related literature [35]–[37]
shows that the least squares with `1-regularization can solve
problem (I.2) under condition Cov(f(U, ε), U2) 6= 0 with an
excessive risk bounds, where Cov(·, ·) denotes the correlation.
Combining the U -process loss function, the method proposed
in [38] can also solve this problem in high-dimensional
settings. However, none of these previous works considered
the low-rank property of the matrix form PR.

Low-rank phase retrieval [12], [39] and low-rank matrix
sensing [14] are two matrix-based estimation problems which
are also relevant to our work in the sense of matrix variables.
The problem of low-rank phase retrieval is as follows: given
a set of n measurements in the form yi,j := |x>i,jmj |2 (i =
1, 2, ..., n, j = 1, ..., d2) for each column mj of M∗ separately,
the goal is to recover x by some non-convex algorithms such
as QR factorization and alternative TWF methods. While,
matrix sensing seeks to recover rank-r∗ matrix M∗ from
measurements by the form of yi = 〈M∗,Xi〉. Note that it
serves as a special case of our model when f(z, ε) ≡ z.
A more general matrix sensing problem is nonlinear affine
rank minimization, which could be recently solved by a
variant of projected gradient descent methods (a.k.a. MAPLE)
in [18] under the assumption that the link function must
be differentiable and monotonic. To further strengthen the
generality of our considered model, a comparison of this
work with other most related existing works is summarized in
Table I. Note that in the matrix multi-index model (MIM) [40],
such as sufficient dimensionality reduction, the link function
is a multivariate function with respect to measurements
regardless of noise, i.e., y = f(·, . . . , ·, ε), which is out of
the scope of this work as shown in (I.1).

C. Main Contributions

In this paper, the proposed STPower algorithm is greatly
inspired by power iteration methods [41], to which our
truncation on the singular values is novel and different. To
the best of our knowledge, there is no existing work that
incorporates the low-rank formulation into the agnostic SIM
regime and STPower is the first spectrum truncation iterative
scheme that solves problem (I.1) with provable theoretical
convergence rate guarantees. Main contributions of this work
are highlighted as follows:

1) Leveraging the low-rank structure of the underlying PR
model, we propose a new spectrum truncation algorithm to
solve AMPR problem by applying computationally efficient
power iteration.
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TABLE I: Comparison of problem settings with other related works.

Method f(u) X Measurement 1

LRPR [12] |u|2 Gaussian 〈xi,k,m
∗
k〉 (column-wise) i ∈ [n], k ∈ [d2]

MAPLE [18] 0 < f ′(u) < C,
differentiable monotonic sub-Gaussian 〈Xi,M

∗〉 i ∈ [n]

TPower [34] |u|2 Guassian 〈xi,m
∗〉 i ∈ [n]

STPower (this work) second-order distributionally differentiable sub-Gaussian 〈Xi,M
∗〉 i ∈ [n]

We have M∗ := [m∗1,m
∗
2, ...,m

∗
d2

] ∈ Rd1×d2 , where m∗k denotes the k-th column of M∗. We denote a vector by a bold lower case letter
(e.g., x), and a matrix by a bold upper case letter (e.g., X).

2) Under very mild assumptions on measurement matrix
X and unknown function f(·, ε), our estimator is shown
to achieve a near-optimal statistical rate with a linear
convergence rate for optimization error, implying the strong
low-rank recovery guarantees. Multiple experiments verify
our theoretical findings.

3) The considered AMPR model is very general, which
can be applied to recover the desired variables in a wide
class of PR problems, especially for the case where the
prior knowledge of the nonparametric model is inaccurate or
partially unknown.

D. Notation
In the following, we outline most of the commonly used

notations for convenience of discussion. If not specified,
vec(M) denotes a vector obtained by concatenating the
columns of M, otherwise it can also be realized by
concatenating the rows and transposing. We define:

λmax(A, r) = max
M∈Rd1×d2

vec(M)>A vec(M), (I.3a)

subject to ‖M‖F = 1, rank(M) ≤ r, (I.3b)

where ‖ · ‖F denotes the Frobenius norm of matrices.
Let Sp = {A ∈ Rp×p|A = A>} stand for the set
of symmetric matrices. For any A ∈ Sp, we denote its
eigenvalues by λmin(A) = λp(A) ≤ . . . ≤ λ1(A) =
λmax(A). We denote by ρ(A) the spectral norm of A,
and define ρ(A, r) = max{|λmax(A, r)|, |λmin(A, r)|}. In
addition, the set {1, ..., n} is denoted by [n]. Let basis(M) :=
{i1, i2, ..., ir}, where columns indexed by {i1, i2, ..., ir} ⊆
[d2] form a set of maximum independent vectors in Rd1 and
rank(M) = r. Note that there may be multiple choices of
basis(M) for a fixed M and we can take any of them for
a specific need. Without loss of generality, we also postulate
that d1 ≤ d2, otherwise we can transpose M and X without
altering the results. Moreover, we denote AB as the restriction
of A on the rows and columns induced by basis index set B
(|B| = r) of matrix M, that is, r columns indexed by B hold
the vec(M)’s rd2 elements (where we suppose d1 ≤ d2),
to which the indexes for the columns and rows of A are
corresponding to each other. Given a rank restriction of M
by an index set B, we define

M(B) := argmax
M∈Rd1×d2

vec(M)>A vec(M), (I.4a)

subject to ‖M‖F = 1, basis(M) ⊆ B. (I.4b)

Given two sequences of random variables {Xn} and {Yn}, We
denote by Xn = Op(Yn) that the sequence of values Xn/Yn is
stochastically bounded, i.e., for any ε > 0, there exists a finite
M > 0 and a finite N > 0 such that, P (|Xn/Yn| > M) <
ε,∀n > N . There will be some sets of interested matrices,
denoted by SMd1×d2 = {M ∈ Rd1×d2 | ‖M‖F = 1} and
BM(r) = {M ∈ Rd1×d2 | rank(M) ≤ r}. Other notations
will be introduced when they are used.

II. MODELS AND ALGORITHMS

In this section, we will formulate the MPR problem (I.1)
into an estimation of the largest eigenvalue of a empirical
expectation of a random matrix under some rank restriction.
After that, we will present the proposed spectrum truncation
iterative algorithm in details.

A. Eigenvector Estimator for AMPR

Now we first clarify the motivation for our estimators
of matrix parameter M∗. Then we will derive the formal
formulation of AMPR and present the assumptions of the link
function f(·, ε) and the generality of applicable settings.

The main idea of developing this estimator is inspired by
the second-order Stein’s identity [42]. For completeness, we
illustrate the first-order Stein’s identity with constraints on the
first-order derivative [36] for SIMs as follows.

1) First-Order Stein’s Identity for SIMs:

Proposition II.1 (First-order Stein’s Identity [43]). Suppose
that X ∈ Rd1×d2 is a real-valued random matrix with
differentiable probability density function g : Rd1×d2 → R.
For a continuous function h : Rd1×d2 → R with existing
E[∇h(X)], the following identity holds:

E[h(X)S(X)] = E[∇h(X)], (II.1)

where S(X) = −∇g(X)/g(X) serves as the score function
of g(·).

When the above proposition is applied to the AMPR model,
we can obtain a direct estimator M∗ by the chain rule. Letting
h(X) = f(〈M∗,X〉, ε) in II.1, we have

E(yS(X)) = E[∂x1
f(〈M∗,X〉, ε)]M∗, (II.2)

where ∂x1
denotes the partial derivative of function f(x1, x2)

with respect to variable x1. In this way, we are able to
directly estimate M∗ by E(yS(X)) as we have set ‖M∗‖F =
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1 for scaling invariance. Unfortunately, it is required that
E[∂x1f(〈M∗,X〉, ε)] 6= 0, which keeps the application of the
identity off a wide range of models, for example, where f(·, ε)
is quadratic in the first variable for the phase retrieval problem.
Thus, we are motivated to check the second-order information
in f(·, ε) for a milder assumption.

2) Second-Order Stein’s Identity for SIMs:

Proposition II.2 (Second-Order Stein’s Identity [42]).
Let the probability density function g(·) of X be twice

differentiable. Then for any second-order distributionally
differentiable function h : Rd1×d2 → R with existing
E[D2h(X)], it follows that

E[h(X)T (X)] = E[D2h(X)], (II.3)

where the second-order score function T : Rd1×d2 →
Rd1d2×d1d2 is defined as T (X) = ∇2g(X)/g(X).

For our MPR model, setting h(X) = f(〈M∗,X〉, ε)
in (II.3), we have

E[yT (X)] = E[f(〈M∗,X〉, ε) · T (X)] (II.4)

= 2E[∂2x1
f(〈M∗,X〉, ε)] vec(M∗) vec(M∗)T , (II.5)

where ∂2x1
refers to the second-order partial derivative of

function f(x1, x2) with respect to variable x1. Hence we
can extract M∗ from the second-order Stein’s identity in a
variety of situations when the first-order identity staggers.
Explicitly in this context, E[∂2x1

f(〈M∗,X〉, ε)] is supposed to
be nonzero. Without loss of generality, it suffices to assume
E[∂2x1

f(〈M∗,X〉, ε)] > 0, otherwise the sign of y can be
flipped and f(·, ε) is changed to −f(·, ε). Such restricted
function f(·, ε) is called a second-order link function in [44].
Intuitively, as the information of vec(M∗) is included in the
second-order cross moments, we will call A∗ = E[yT (X)]
the second-order link matrix. When vec(X) ∼ N (0, Id1d2),
we have

2E[∂2x1
f(〈M∗,X〉, ε)] vec(M∗) vec(M∗)T (II.6)

(a)
=E[f(〈M∗,X〉, ε)(vec(X) vec(X)> − Id1d2)] (II.7)
(b)
=E[y(vec(X) vec(X)> − Id1d2)] (II.8)

where in (a) we utilize the density function of Gaussian
distribution, and (b) is true due to the definition of the model,
i.e., y = f(〈M∗,X〉, ε). As the measurement matrix X can
usually be generated by the observer, such i.i.d. Gaussian
distribution is widely applied for a concise form of (II.4).
Motivated by (II.4), we need to obtain the leading eigenvector
of the sampled version of A∗: A = 1/n

∑n
i=1[yiTi(X)],

which is a vectorization of the solution. Then, we decompose
A by A = A∗ + E, where E is a random perturbation
matrix due to a finite number of empirical samples. To recover
M∗ (i.e., vec(M∗).) from the noisy observation A when the
perturbation E is relatively small, we need to enforce the rank
of M through the estimation procedure under a tunable preset
level r0 (r0 ≥ r∗ implicitly). Using this idea, we formulate
the estimation problem in the following new form.

Definition II.3 (the largest r0-rank eigenvalue problem).

M̄∗ = argmax
M∈Rd1×d2

vec(M)>E[yT (X)] vec(M), (II.9a)

subject to ‖M‖F = 1, rank(M) ≤ r0. (II.9b)

Definition II.3 enables us to solve the AMPR problem (I.1)
by a rank-restricted large eigenvalue problem (II.9).
Furthermore, we remark that the information of the
unknown link function f is encoded in the coefficient of
vec(M̄∗) vec(M̄∗)T in (II.5) as a scaling factor. Hence due
to normalization ‖M‖F = 1, our estimation does not depend
on f anymore. It is possible to solve (II.9) by exhaustively
enumerating subsets of {1, ..., d1} or {1, ..., d2} to obtain
r0 × r0 principle matrix Ar0 ’s and pick up the largest
λmax(Ar0). However, this is intractable due to expensive
computational cost. Inspired by [23], [34], we propose a
spectrum truncation power iteration to guarantee a low-rank
structure of the matrix efficiently.

B. Spectrum Truncation Power Iteration

We now present the iterative procedure by leveraging
the standard power iteration method for rank-restricted
eigenvalue problems. The details of implementing the
proposed algorithm is shown in Algorithm 1 formally,
which produces a sequence of intermediate at most r0-rank
parameter matrix M(0),M(1), .... We split the procedure into
three main steps: 1) at time step t, the vectorized iterate
vec(M(t)) of M(t) is multiplied by A; 2) the spectrum of
M(t+0.5) is truncated by holding out the surplus non-zero
singular values so that the matrix is approximately below rank
r0; 3) the truncated matrix is normalized by its Frobenius
norm. The truncation operator is defined as the following.

Definition II.4 (Spectrum Truncation Operator). Given a
matrix M ∈ Rd1×d2 of rank r and its singular value
decomposition in the form: M = UΣV∗, where U ∈ Rd1×d1

and V ∈ Rd2×d2 are unitary, Σ =

[
Σr 0
0 0

]
∈ Rd1×d2 and

Σr = diag(σ1, ..., σr) ∈ Rr×r. Here, σ1 ≥ ... ≥ σr > 0 are
the ordered positive singular values of M. Then the spectrum
truncation operator Tr0 gives: Tr0(M) = UΣ′V∗, where

Σ′ =

[
Σr0 0

0 0

]
∈ Rd1×d2 and Σr0 = diag(σ1, ..., σr0) ∈

Rr0×r0 .

Through the truncation, we obtain another immediate iterate
M̂(t+1) as a low-rank projection of M(t+0.5). Note that when
the rank of M(t+0.5) is no more than r0, all the positive
singular values of M(t+0.5) are kept intact.

In case of scarce knowledge of the target rank, the truncation
level is to be tuned, which is proved to be feasible by
Theorem III.2. The computational complexity of the proposed
algorithm at each iteration is O(r0(d1d2)2)(where d1 ≤ d2)
with the fast low-rank principal component analysis (PCA)
implementation [45]. Compared to former truncated power
methods for sparse vectors, we save the labor on selecting the
truncation set as the SVD result has arranged the r0 largest
singular values in the top left corner of Σ. Another benefit
brought by power methods is its computationally efficient
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Algorithm 1 Spectrum Truncation Power (STPower) Iteration

1: Input: second-order link matrix A ∈ Sd1d2 , initial matrix
M(0) ∈ Rd1×d2

2: Output: Estimation of M∗: M ∈ Rd1×d2

3: Parameters: rank restriction parameter r0, accuracy for
convergence verification η

4: t← 0.
5: Repeat
6: Power Iteration:

vec(M(t+0.5)) = A vec(M(t))/‖A vec(M(t))‖ (II.10)

7: Spectrum Truncation: M̂(t+1) ← Tr0(M(t+0.5))

8: Normalization: M(t+1) ← M̂(t+1)/‖M̂(t+1)‖F
9: Update: t← t+ 1

10: Until ‖M(t) −M(t−1)‖F < η
11: Output: M←M(t)

parallel implementation on multiple computing resources, e.g.,
large-scale clusters. As a result, the estimation process can
be considerably accelerated in such practical scenarios. In
addition, due to the normalization step in our algorithm, we
can only recover the target matrix up to the Frobenius norm,
which is similar to the recovery of unknown signals up to
magnitudes in [46] without knowledge of link functions.

III. THEORETICAL GUARANTEES

In this section, we will present the main theoretical
convergence results of STPower, including the linear
convergence rate with respect to optimization error under
Gaussian measurements (note that a general distribution is
also allowed for the measurement matrix, e.g., sub-Gaussian).
The results will give a clear demonstration of the low-rank
recovery performance of STPower with applications to AMPR
models. In addition, theoretical insights help refine the details
in our algorithm implementation.

A. Convergence Guarantees
Before showing the theorems, we first define the

gap between the largest and the other eigenvalues:
δλ = λmax(A∗) − maxj>1 |λj(A∗)|. Also, the eigenvector
v(λmax) of the largest eigenvalue λ = λmax(A∗) corresponds
to low-rank matrix M∗ with rank r∗. We need the further
assumption below.

Assumption III.1. We assume the eigenvalues of A are
non-degenerate.

Due to the randomness in obtaining A, such an assumption
is reasonable. The following result quantifies the strong low
rank recovery performance and the convergence rate of the
STPower iterative algorithm.

Theorem III.2. Under Assumption III.1, assume ρ(E, r) <
δλ

2
. Let r0 ≥ r∗ and r = 2r0 + r∗. We define

δ(r) :=

√
2ρ(E, r)√

ρ(E, r)2 + (δλ− 2ρ(E, r))2
, (III.1)

γ(r) :=
λ− δλ+ ρ(E, r)

λ− ρ(E, r)
< 1. (III.2)

If the initial matrix iterate M(0) admits ‖M(0)‖F = 1, the
target matrix M∗ satisfy |〈M(0),M∗〉| ≥ δ(r) + ω, and ω ∈
(0, 1) such that

β =

√(
1 +

2
√
r∗√

r0 − r∗

)
·
(

1− (1− γ(r)2)ω(1 + ω)

2

)
< 1

(III.3)

serving as a coefficient of contraction mapping, then we have
either ‖M(0) −M∗‖F < 2δ(r)/(1− β) or

‖M(t)−M∗‖F ≤ βt‖M(0)−M∗‖F+
2δ(r)

1− β
, ∀t ≥ 0. (III.4)

Proof: See Appendix A for a detailed proof.
Theorem III.2 states the essential relation between a

linear convergence behavior of STPower and corresponding
statistical error, which are related to quantity ρ(E, r). It can
be observed that when the rank restricted norm ρ(E, r) falls
below a half of the eigen-gap (the gap between the second
largest eigenvalue in absolute value and the largest eigenvalue
of A), it holds that γ(r) < 1 and δ(r) = O(ρ(E, r)), where
we ignore the constants in the discussion. Note that for any
r0 > r∗, if γ(r) is sufficiently small then we can meet the
requirement on β defined in (III.3) by a sufficiently small ω of
the order O((r∗/r0)1/2)). In particular, we have the following
remark characterizing the dependency of r0 on r∗ under the
impact of the eigenvalue gap of the second-order link marix
A∗ and the sample size n, while combining with Theorem III.6
on the sample complexity.

Remark III.3. For c ∈ (0, 1), when

n = Ωp

(( 1 + c

δλ+ (1 + c)λ

)2
rmax(d1, d2) log max(d1, d2)

)
,

we have

ρ(E, r) <
δλ+ (1 + c)λ

1 + c
, and γ(r) < c. (III.5)

According to the definition of β in (III.3), if we also set

r0 >

(
1 +

( 2

1− c2
− 2
)2)

· r∗, (III.6)

then, there exists an ω ∈ (0, 1) such that we have β defined in
Theorem III.2 to satisfy β < 1. Here we assume the constants
in notations Ωp and Op to be 1 for simplicity.

If the rank restricted norm is small enough, the initialization
restriction will be easy to achieve, and experiments show that
even a random initialization with i.i.d. Gaussian entries works.
Otherwise, we can regulate r0 to be greater first and keep
reducing r0 by rerunning the algorithm with an initial value
from the result of the last run. In the next paragraph, we will
elaborate this issue in more details.

Suppose that maxi,j |M∗
i,j | is sufficiently large and (k, l) =

argmaxi,j |M∗
i,j |, then we initialize M(0) = Gk,l, where

Gk,l is the matrix of 0’s except a 1 at (k, l). In this
way |〈M(0),M∗〉| = |M∗

k,l| is sufficiently large such that
|〈M(0),M∗〉| ≥ C ′ρ(E, r) holds with r0 = O(r∗) for some
constant C ′. However, if we fail to initially make |〈M(0),M∗〉|
large enough, we can regulate r0 to be greater for a larger
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ρ(E, r) to meet the initial condition of M(0), which gives a
larger ρ(E, r) and M(t) may not converge to M∗ accurately.
Fortunately, as long as |〈M(t),M∗〉| converges to a value that
is not too small (may be much larger than |〈M(0),M∗〉|),
we may reduce r0 and rerun the algorithm with a r0-rank
truncation of M(t) as the initial vector. We can use two
stages for the initialization, e.g., 1) we can run STPower with
r0 = d1d2 by random initialization where STPower reduces
to power method which gives the dominant eigenvector
vec(M) of A, 2) r0 is reduced to r′0, following Algorithm
1, we have a new initial value M(0) := Tr′0(M)/‖Tr′0(M)‖,
then Lemma A.5 (which will be presented later) implies
〈M(0),M∗〉 ≥ δ(r).

After the conditions of initialization and rank restricted
norm are satisfied, it follows that ‖M(t) −M∗‖F converges
geometrically until ‖M(t) − M∗‖F = O(ρ(E, r)), which
indicates βt‖M(0) − M∗‖F → 0 due to the accumulative
contraction leveraged by the power iteration. Such implication
also inspires us to give Lemma A.3 in Appendix, which
sharpens the results in terms of replacing the full matrix norm
by a smaller ρ(E, r). Similar result for the vector case was also
shown in [34] by using the eigenvalue perturbation theory [47].
We remark that our simple yet effective rank restricted norm
actually encodes more structural information of the problem.

B. Concentration Property

Next, we proceed to present the concentration properties of
replacing the population matrix A∗ with its sampled version A
below. The results are based on the following mild assumption.
Recall that y is the scalar response of the data generating
model, T (X) is the second-order score function defined in
Section II.2. We denote by T (X)ij the element at the i-th
row and j-th column of the matrix T (X) ∈ Rd1d2×d1d2 .

Assumption III.4. Let σ be the largest singular value of the
covariance matrix yT (X). Then there exists a constant K ∈ R
such that for all i, j ∈ [d1d2], |yT (X)ij | ≤ K and σ ≤ K.

Note that such practical condition, which is also applicable
to a large class of sub-Gaussian sampling matrices [48], is
mild since there is no any assumption on the distribution of
X. The following lemma is a new crucial cover number result
in the normalized rank-restricted matrix space.

Lemma III.5 (Cover Number in the Rank Restricted Matrix
Space). For the set Sd1×d2M ∩BM(r) with the metric induced
by the Frobenius norm, an ε-netN (ε, r, d1, d2) is a subset such
that for every point M ∈ Sd1×d2M ∩BM(r), there exists a point
Mε ∈ N (ε, r, d1, d2) satisfying ‖M−Mε‖F ≤ ε. We denote
the minimal cardinality of an ε-net of Sd1×d2M ∩ BM(r) as
N(ε, r, d1, d2). Considering the independence of the columns,
we have a bound of N(ε, r, d1, d2), i.e.,

N(ε, r, d1, d2) ≤
(

2

ε
+ 1

)rd1
. (III.7)

In addition, for 0 ≤ ε < 1 and S being a symmetric d1d2 ×

d1d2 matrix, the following inequality also holds.

max
M1∈N (ε,r,d1,d2)

| vec(M1)>S vec(M1)|

≥ (1− 2ε) max
M2∈S

d1×d2
M ∩BM(r)

| vec(M2)>S vec(M2)|.

Proof: See Appendix B for a detailed proof.
In the following, we will provide the concentration bound

given a sufficiently large n.

C. Sample Complexity

The idea of showing this result is to stochastically bound the
rank restricted norm of perturbation matrix E with problem
dimensions r, d1, d2, and n.

Theorem III.6. In the AMPR model, under Assumption III.4,
we have the perturbation formulation of matrix A ,
A∗ + E, where A∗ = E[y(vec(X) vec(X)T − I)] and

A =
1

n

∑n
i=1[yi(vec(Xi) vec(Xi)

T
i ) − I] with {yi,Xi}

being independent samples drawn from y = f(〈M∗,X〉),
and satisfying Assumption III.4. Then for sufficiently large
r, d1, d2 and n > rmax(d1,d2) logmax(d1,d2)

K we have

ρ(A−A∗, r) = Op

(√
rmax(d1, d2) log max(d1, d2)

n

)
,

(III.8)
where K is the some constant given in Assumption III.4.

Proof: See Appendix C for a detailed proof.
The other intermediate lemmas leading to the main results

in details are presented in the appendix. Note that there are
rmax(d1, d2) independent variables of a low-rank matrix. The
difference between the obtained rate and the lower bound of
low rank matrix sensing [49] is up to O(

√
log max(d1, d2)),

therefore we claim that our algorithm achieves a near-optimal
minmax statistical rate.

Actually, compared with Assumption III.4, much milder
assumptions, i.e., ‖yiT (Xi)‖2 ≤ C almost surely and
‖
∑
i EX2

i ‖2 ≤ σ2 for some constants C and σ (which can be
found in [50]), are enough to show the statistical rate (III.8) by
applying the Bernstein inequality in Lemma A.6 to estimate a
rough tail bound for ρ(A−A∗, r).

In addition, our theoretical analysis further reveals the
connection between the structure of the largest eigenvalue
problems and the first- and second-order Stein’s identities for
a wide range of distributions for measurements in AMPR.

IV. NUMERICAL EXPERIMENTS

In this section, we show numerical results for three
typical AMPR models and verify the theoretical finite-sample
statistical error on the simulated data, as well as for a
comparison to several matrix recovery methods with similar
yet slightly different settings. STPower can deal with different
link functions which are second-order differentiable under
distributional derivatives.
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Fig. 1: Frobenius distances between the true parameter M∗ and the estimation M in AMPR with link function in one of
f1(·, ε), f2(·, ε), and f3(·, ε) in case of d1 = d2 = 10, d1 = 10, d2 = 20, d1 = d2 = 20, r∗ = 3, and varying sample size n.
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Fig. 2: Comparison of different matrix recovery methods via convergence curves under logarithmic Frobenius distances measure.
The link function is f(x, ε) = x2 + sin(x) + ε, under different dimensions.

A. Experiments Setup

In this work, we test the convergence property of the
proposed algorithm on the following three neat representative
functions:

f1(x, ε) = x2+ε, f2(x, ε) = |x|+ε, f3(x, ε) = x2+sin(x)+ε,

where f1(x, ε) accounts for the noisy phase retrieval model
as traditional vector scenarios except for a rank restriction on
the matrix M, the absolute value in f2(x, ε) keeps away the
function from commonly recognized differentiable categories,
f3(x, ε) can be regarded as a robust extension of f1(x, ε). We
will concentrate on i.i.d. standard Gaussian design for each
entry of X, i.e., Xij ∼ N (0, 1), for a clearer interpretation of
the convergence performance behaviour and the near-optimal
statistical rate. The convergence behaviors of STPower under
more complicated settings would be studied as the future work.

Since our theory requires the number of samples n &
rmax(d1, d2) log max(d1, d2)/K, r � d1, d2, we fix d1 =
d2 = 20, r∗ = 3 while varying n in an uniform range
with a step-size of 1000. To generate a random r∗-rank
d1 × d2 matrix M∗ for the data model, we use two random
matrices M1 ∈ Rd1×r∗ and M2 ∈ Rr∗×d2 with i.i.d.
standard Gaussian entries, then let M′ = M1M2 ∈ Rd1×d2
and normalize M′ to obtain M∗. We simply initialize the
iterate M(0) by the standard Gaussian random values. For

guarantee of a good initial matrix, we use the warm-start
strategy illustrated in section III.2. We also generate another
independent second-order link matrix Aval to fine-tune r0.
Moreover, we utilize the Frobenius distance between the final
output M after a run of STPower and the aforementioned
M∗, i.e., ‖M−M∗‖F as the measurement of the estimation
error. For the convergence condition, we set η = 10−6. In
addition, the truncation operation in our realization adopts a
top-r0 singular value decomposition for efficiency. Throughout
the experiments, in a loop of n, we randomly draw n i.i.d.
samples for X while computing the responses {yi}ni=1 via M∗

and ε ∼ N (0, 1) according to (I.1) to obtain A. Considering
the randomness of the noise, we repeat the above procedure
for T = 50 times independently for each fixed n to quantify
the average error en = 1/T

∑T
t=1 ‖Mt−M∗‖F as the single

result.

B. Numerical Results

We plot the Frobenius distance (estimation
error) against statistical convergence rate√
rmax(d1, d2) log max(d1, d2)/n in Figure 1(a)–1(c)

for each second-order link function. It demonstrates that the
Frobenius estimation error is approximately tightly bounded
within the same order of a linear function of the statistical
rate, which justifies our main theoretical results. For a further
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Fig. 3: Convergence curves under logarithmic Frobenius distances measure in AMPR with link function in one of f1(·, ε),
f2(·, ε), and f3(·, ε) in case of diverse d1, d2, and r∗ values.
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distances measure with link function f1(·, ε) and different
condition numbers.

demonstration of the convergence rate of the algorithm, we
also conduct additional simulations for convergence curves in
comparison to other low-rank matrix estimation algorithms -
SVD, factorized gradient descent (FGD), multiple invocations
of exact singular value decompositions (SVDs) [24], and
MAPLE [18] for link function f(x, ε) = x2 + sin(x) + ε, as
f2(x, ε) can hardly be solved in the their paradigm due to
special smoothness constraints on link functions. In addition,
these baselines are gradient-based truncation approaches that
pose strong limitation (e.g., differentiability) in link functions.

The curves averaged over 10 independent trials of running
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Fig. 6: Convergence curves under logarithmic Frobenius
distances measure with link function f1(·, ε), d1 = d2 = 32
and different r∗ values.

the algorithms show the relation between error in logarithm
versus the number of iterations in Figure 2(a)–2(c). We can
observe that STPower converges more rapidly and achieves
a lower error in this setting compared with the baselines.
Among the baselines, MAPLE shows the best convergence
performance but still reaches a bad solution. Moreover, we
find that the performance of some gradient-based truncation
methods are not stable. The reason might be partially due
to the difficulty of finding an optimal optimal step-size. In
return, it shows another benefit enjoyed by power methods
that less hyperparameters are needed to be controlled for
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Fig. 7: Image recovery results by STPower compared with other gradient-based methods. We select four images as examples
with low-rank structure from MNIST and CIFAR10 dataset, respectively. For each original image, the first row corresponds
to recovery under the link function f2, and the second row corresponds to recovery under f3. The first column provides the
groundtruth image to recover, and the column 2-6 represent the image recovery results obtained by STPower, FGD, SVD,
SVDs, and MAPLE, and the last column shows the convergence behaviors of STPower in the four cases. Note that in some
of the recovered images, the values of the pixels are flipped compared with the original one. This is because the phase can
only be recovered up to a difference of π.
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TABLE II: Comparison of reconstruction errors with other
related works.

Reconstruction Error STPower FGD SVD SVDs MAPLE

car, f2 0.588 1.376 1.457 1.457 1.457
car, f3 0.363 1.457 1.491 1.491 1.457

horse, f2 0.380 1.434 1.462 1.205 1.462

horse, f3 0.372 1.462 1.453 1.429 1.462

We measure the quantitative performance of the algorithms using the
reconstruction error, i.e., ‖M̄ −M∗‖F , where the Frobenius norm of each
matrix, i.e., M̄ and M∗ has been normalized to 1.

implementing the algorithm. Toward this end, we have
verified the performance of STPower with respect to both
computational efficiency and statistical accuracy.

In addition, we provide some further simulation results
to support the notable convergence performance and wide
applicability of our algorithm. A bunch of convergence curves
with different d1, d2, r∗ settings plotted in Figure 4(a)–4(c).
We can conclude that the optimization error of STPower
converges rapidly at a geometric rate until the statistical error
is achieved. With the increase of matrix dimensions and the
true rank, the statistical error rises, which verifies the gap
caused by rank restricted norm presented on the right-hand
side of (III.4) and statistical rate in Theorem III.6. Such
results further indicate that our algorithm inherits both the fast
convergence property of the power method and effectiveness
of a proper matrix estimator.

To show the more numerical performance of STPower
compared with the other state-of-the-art methods in the
cases with larger dimensions and different condition numbers
of the second-order link matrix A, we perform additional
experiments as below. We first added the comparison of the
STPower in well-conditioned and ill-conditioned cases under
Gaussian measurements, wherein the well-conditioned case we
use the i.i.d. Gaussian entries, which results in a diagonal
A∗ with identical singular values, i.e., the variances of the
normal distribution. Hence the condition number is 1. In
the ill-conditioned case, we modified the variance of some
entry of X to be 0.1 and two entries of X to be 1.5 and
0.15, to generate ”ill-conditioned” and ”ill-conditioned2” cases
respectively in Figure 5. It can be observed from the figure that
STPower, in either case, shows a linear convergence behavior
at the beginning, and then the convergence curve becomes flat
after a number of iterations. Since the modified variances are
different, it can be seen that the final statistical error achieved
by STPower in well-conditioned and ill-conditioned cases are
dissimilar as well. Better error induced by ”ill-conditioned”
follows from a larger eigengap and smaller variance, while
the worse performance of ”ill-conditioned2” results from a
larger variance that outweighs the larger eigengap.

For large scale experiments, we lay out the results of the
scaling effects of statistical errors in Figure 4 with dimensions
of 32 × 32 , 64 × 64 , and 128 × 128. We can extend to
larger thousands of dimensions by blockwise computation and
parallelization based on power iteration when having access to
more computational resources. Furthermore, we add more real

groundtruth recovered image

Fig. 8: An example of image recovery from Fourier
measurements by applying STPower.

groundtruth
airplane

recovered airplane groundtruth car recovered car

Fig. 9: Examples of the image recovery results from sparse
high-dimensional images.

data experiments to demonstrate the effectiveness of STPower
for general/unknown link functions in Figure 7. We select four
images as examples with a low-rank structure from MNIST
and CIFAR10 datasets, respectively. Also, we adopt Gaussian
measurements with link function f2 for the first two rows and
link function f3 for the last two rows to generate the responses
of the AMPR model. Our recovery result in the second column
reveals that the proposed STPower is able to recover the
digits successfully and the airplane approximately while the
existing works fail to recover the ground truth. The reason is
that the previous works lie on the smoothness/differentiability
and monotonicity of the link function. Specifically, for two
considered AMPR models, link function f2, i.e., absolute
value, does not satisfy these conditions, and link function f3
only meets these conditions over a limited domain. Therefore,
other gradient-based methods either diverge in the pixel values
(We clip the grayscale pixel values at 0 and 255.) or only
have some chance to recover, e.g., Figure 7(2-b), when the
measurements lie in the region satisfying the aforementioned
conditions. The overall results illustrate that our proposed
model agnostic PR solved by STPower is more general than
the ones considered in [18]. To make the experiments more
informative and extensive, we select two more recovery results
of more complicated images from the CIFAR10 dataset, which
consist of a horse and a car with more texture, respectively.
The new experiments share the same settings as before. Such
results further demonstrate that our algorithm works relatively
well without the differentiability and monotonicity of the link
function. Also, with the reconstruction errors provided in
Table II, we confirm that our method provides quantitatively
fair solutions to the agnostic matrix PR problem.

In high-dimensional settings, our method may require more
storage. In real-world data, by using the sparsity feature
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of images, we are able to directly apply our algorithm via
the operations for sparse matrices. In Figure 9 we provide
example results for sparse images of dimension 256 × 256
under the link function f3. While extending our method to a
distributed scenario by leveraging the efficient matrix-vector
multiplication of the power iteration would be an interesting
future direction.

Furthermore, for practical consideration, we also attempt
to run our algorithm for Fourier measurements [25] with
Gaussian noise, and provide an example result in Figure 8.
Specifically, we adopt (II.6) to calculate the second-order
link matrix but replace the response y with the response of
Fourier transformation measurements with added Gaussian
noise. Without theoretical guarantees, our method works
slightly well in the sense that the boundary of the object
could be found. Also, it can be observed that when the
variance of the added Gaussian noise is large, STPower
will perform better. It is worth noting that in practical PR
problems, Fourier measurements would be used instead of
the random measurements considered in [34], [46]. However,
the methods developed from randomized PR with strong
theoretical guarantees are still widely applied in practice.
Similarly, we hope that our work sheds light on the practical
algorithm design for PR, and serves as a theoretically sound
choice even in real-world problems, especially for low-rank
matrix signals where very few approaches are explored.

V. CONCLUDING REMARK

In this paper, we considered a new class of AMPR model,
which is a generalization of traditional PR and SIMs to
low-rank matrix scenarios under relatively mild assumptions
on the second-order link function f(·, ε) and X. Specifically,
we cast the AMPR model into a rank restricted largest
eigenvalue problem with a second-order link matrix by Stein’s
identity. A novel algorithm STPower was proposed to solve the
constrained optimization problem with a near-optimal optimal
statistical rate. We justified the effectiveness of our algorithm
with sufficient technical analysis and numerical results. To
conclude, we list the advantages of our algorithm and model
to justify the meaningfulness of our work below.
• We require no specific information of the link function

in the matrix PR model, compared with existing works
that inquire the gradient of the link function or assume a
quadratic model.

• We pose less restrictions on the link function, compared
with related works on matrix PR. For example, the most
related works in Table 1.

• Our power-iteration based method has fewer
hyperparameters to tune, for example, the stepsize
and penalty coefficients, when compared with existing
gradient based methods. Hence STPower is more
implementable in practice.

• In addition, since STPower is based on power iteration
method, it can be parallelized on large clusters for
large-scale applications.

Additionally, in popular deep learning models composed
by cascades of index models, our model can be applied to

develop effective estimators for weight matrices with low-rank
restriction, where the activation function corresponds to the
link function f(·, ε) in the literature. This is a prospective
future work.

APPENDIX
In this section, we give the details of proofs used for

the main theories. Our proofs utilize several technical tools
including the perturbation theory of the symmetric eigenvalue
problem, the convergence analysis for the vanilla power
method, the error analysis of spectrum truncation operation,
the cover number in the matrix space, and concentration
inequalities.

A. Proof of Theorem III.2
The proof involves several supporting lemmas. In the

following sections, we denote AB as the principal submatrix of
A with rows and columns indexed by the indexes in vec(M)
corresponding to the elements in columns indicated in set B. If
needed, we will also denote by AB as the restriction of A on
such rows and columns. First, we have the lemma giving how
the error changes under the vanilla power iteration method
applied to the matrix case below. Note that A = A∗ + E.

Lemma A.1. Let vec(N) derived from vectorizing the matrix
N ∈ Rd1×d2 be the eigenvector of the largest eigenvalue of
a d1d2 × d1d2 symmetric matrix A in absolute value, and
suppose that γ < 1 is the ratio of the second largest to largest
eigenvalue by absolute values. Then for any M ∈ Rd1×d2
such that ‖M‖F = 1 and 〈M,N〉 > 0, letting vec(M′) =
A vec(M)/‖A vec(M)‖, we have

‖M′−N‖2F ≤ [1− 1

2
(1−γ2)(1+〈M,N〉)〈M,N〉]‖M−N‖2F .

(A.1)

Proof: Without loss of generality, we may assume that
the largest eigenvalue in absolute value λ1(A) = 1, and
|λj(A)| ≤ γ for j > 1. vec(M) can be decomposed into

vec(M) = p vec(N) + qn′, (A.2)

where n′ ∈ Rd1d2 satisfying vec(N)>n′ = 0, ‖N‖F =
‖n′‖2 = 1, and p2+q2 = 1, which is followed by p = 〈M,N〉.
Let b′ = An′, then ‖b′‖2 ≤ γ and vec(N)>b′ = 0.
Then by left multiplying A to (A.2) we have A vec(M) =
p vec(N) + qb′, it follows that

|〈M′,N〉| = | vec(N)>A vec(M)|
‖A vec(M‖

(A.3)

=
|pλ1(A) + q vec(N)>An′|√

p2 + q2‖b′‖2
=
|p+ q vec(N)>b′|√

p2 + q2‖b′‖2

=
|p|√

p2 + q2‖b′‖2
≥ |p|√

p2 + q2γ2

=
|〈M,N〉|√

1− (1− γ2)(1− 〈M,N〉2)

≥ |〈M,N〉|[1 + (1− γ2)(1− 〈M,N〉2)/2]. (A.4)

The last inequality is derived from 1/
√

1− t ≥ 1 + t/2 for
t ∈ [0, 1). For simplicity and without loss of generality, we
postulate that 〈M′,N〉 ≥ 0, otherwise the signs in the proof
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can be simply properly changed. Then we are able to compute
the norm

‖M′ −N‖2F = 2− 2|〈M′,N〉| (A.5)

≤ 2− 2|〈M,N〉|[1 + (1− γ2)(1 + 〈M,N〉)(1− 〈M,N〉)/2]

= [1− (1− γ2)(1 + 〈M,N〉)〈M,N〉/2](2− 2〈M,N〉)
= [1− (1− γ2)(1 + 〈M,N〉)〈M,N〉/2]‖M−N‖2F ,

which shows the desired bound.
The following standard result shows the perturbation theory

of the symmetric eigenvalue problem.

Lemma A.2. If P and P + U are p× p symmetric matrices,
then ∀1 ≤ k ≤ p,

λk(P) + λp(U) ≤ λk(P + U) ≤ λk(P) + λ1(U), (A.6)

where λk(P) stands for the k-th largest eigenvalue of P.

The detailed proof of Lemma A.2 can be found in [47]. By
leveraging this lemma, we can show the error bound between
the true parameter matrix and a relaxed one below.

Lemma A.3. Suppose that the rank of d1×d2 matrix M is r.
Let B (B 6= ∅) be the set of column indexes of the maximum
linearly independent columns in M (rank(M) = r, |B| = r)
and basis(M∗) ⊆ B. If ρ(E, r) ≤ δλ/2, then the ratio of the
second largest (in absolute value) to the largest eigenvalue
of matrix A is no more than γ(r) = λ1(A

∗)−δλ+ρ(E,r)
λ1(A∗)−ρ(E,r) .

Furthermore,

‖M∗ −M(B)‖F ≤ δ(r) :=

√
2ρ(E, r)√

ρ(E, r)2 + (δλ− 2ρ(E, r))2
.

(A.7)

Proof: Replacing P, U with A∗B and EB respectively, we
have

λ1(AB) ≥ λ1(A∗B) + λp(EB) ≥ λ1(A∗B)− ρ(EB)

≥ λ1(A∗)− ρ(E, r), (A.8)

where the last inequality comes from the definition of ρ(E, r)
and the fact that EB is a restriction of E on B. Furthermore,
∀j ≥ 2,

|λj(AB)| ≤ |λj(A∗B)|+ ρ(EB) ≤ λ1(A∗)− δλ+ ρ(E, r),

which demonstrates the first statement of the lemma.
We decompose the largest eigenvector of AB, i.e.,

vec(M(B)), with M(B) of low rank no greater than r, into
the following two orthogonal directions,

vec(M(B)) = s vec(M∗) + tm′, (A.9)

where ‖M∗‖F = ‖m′‖ = 1, vec(M∗)>m′ = 0 and s2 + t2 =
1, with eigenvalue λ′ ≥ λ1(A∗)− ρ(E, r). It follows that

sAB vec(M∗) + tABm
′ = λ′(s vec(M∗) + tm′).

Multiplying by m′>, we have

sm′>AB vec(M∗) + tm′>ABm
′ = λ′t,

that is,

|t| ≤ |s| |m
′>AB vec(M∗)|

λ′ −m′>ABm′
= |s| |m

′>EB vec(M∗)|
λ′ −m′>ABm′

,

(A.10)

where the last equality follows from m′>A∗B vec(M∗) =
λ1(A∗)m′> vec(M∗) = 0, which is supported by the
assumption that basis(M∗) ⊆ B. Furthermore, the numerator
of Eq.(A.10) can be upper bounded by

|m′>EB vec(M∗)| ≤ max
‖y‖=‖x‖=1

|y>EBx| = ρ(EB) ≤ ρ(E, r).

(A.11)

Also, we estimate the denominator of Eq.(A.10) by
λ′ −m′>ABm

′

≥ λ1(A∗)− ρ(E, r)−m′>A∗Bm
′ −m′>EBm

′

≥ λ1(A∗)− ρ(E, r)− |λj(A∗)|j≥2 − ρ(E, r)

≥ δλ− 2ρ(E, r). (A.12)

Putting (A.10) - (A.12) together, we obtain |t| ≤ L|s| where
L = ρ(E, r)/(δλ − 2ρ(E, r)). It implies that 1 = s2 + t2 ≤
s2(1 + L2), therefore s2 ≥ 1/(1 + L2). By multiplying
vec(M∗) to (A.9) we can obtain s = 〈M∗,M(B)〉. We assume
that s > 0 without loss of generality, as otherwise we can
replace vec(M)∗ with − vec(M)∗. Then we apply the above
results to the norm

‖M∗ −M(B)‖2F = 2− 2〈M∗,M(B)〉

= 2− 2s ≤ 2

√
1 + L2 − 1√

1 + L2
≤ 2L2

1 + L2
= δ(r). (A.13)

Thus, the expected bound is proved.
The two following lemmas describe the error introduced by

the matrix spectrum truncation, which admits a tighter bound
compared to the sparse vector truncation case.

Lemma A.4. Let M∗ denote the optimum matrix subject
to (I.3) with rank(M∗) ≤ r∗, and Tr(·) : Rd1×d2 → Rd1×d2
is the singular values truncation operator, which remains the
largest r singular values and truncates the other ones to zero.
Let r0 ≥ r∗, then for any M ∈ Rd1×d2 we have

‖Tr(M)−M∗‖2F ≤
(

1 +
2
√
r∗√

r0 − r∗
)
· ‖M−M∗‖2F . (A.14)

Proof: Suppose that the singular value decomposition of
M and M∗ are in the form of M = UΣVT and M∗ =
U∗Σ∗(V∗)T respectively, where Σ and Σ∗ are near diagonal
matrices in the following form: σ1

σ2
. . .

 , (A.15)

where σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ 0 are the rearranged singular
values of M or M∗. Following the technique in [51], as
U(U∗) and V(V∗) are unitary in singular value decomposition
scheme, we have

‖Tr(M)−M∗‖2F − ‖M−M∗‖2F (A.16)

= ‖Tr(M)‖2F − ‖M‖2F + 2〈M− Tr(M),M∗〉
= ‖Tr(Σ)‖2F − ‖Σ‖2F + 2〈M− Tr(M),M∗〉. (A.17)
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Plugging in Von Neumann’s trace inequality [52] 〈A,B〉 ≤
Σ

min{rank(A),rank(B)}
i=1 σi(A) · σi(B) for matrices A,B ∈

Rd1×d2 , we can reduce (A.16) as follows.

‖Tr(M)−M∗‖2F − ‖M−M∗‖2F
=‖Tr(Σ)‖2F − ‖Σ‖2F + 2〈M− Tr(M),M∗〉 (A.18)

≤‖Tr(Σ)‖2F − ‖Σ‖2F + 2

r∗∑
i=1

σi(M− Tr(M)) · σi(M∗)

=|Tr(Σ)‖2F + 2

r∗∑
i=1

(σi+r(M)− σi+r(Tr(M))) · σi(M∗)

=‖Tr(Σ)−Σ∗‖2F − ‖Σ−Σ∗‖2F . (A.19)

Then Lemma 3.3 in [51] implies the result.
Next, the main lemma demonstrates to what extent capacity

of our overall STPower iteration method can decrease the
estimation error at each iteration. Note that in the following
we measure the error of an iterate M using min{‖M −
M∗‖F , ‖M + M∗‖F }. For simplicity, we still write ‖M −
M∗‖F for the error.

Lemma A.5. Suppose that r0 ≥ r∗. Let r = 2r0 + r∗. If
|〈M(t),M∗〉| > δ(r) +ω for t ∈ N and some ω ∈ (0, 1), then
there exists 0 < β < 1 satisfying

‖M̂(t+1) −M∗‖F ≤ β‖M(t) −M∗‖F + 2δ(r). (A.20)

Proof: We denote the column index set of basis vectors
of M(t) as Bt. Let B = Bt ∪ Bt+1 ∪ basis(M∗). We redefine

vec(M(t+0.5)) = vec(M̃(t+0.5)) =
AB vec(M(t))

‖AB vec(M(t))‖
.

(A.21)
Since replacing vec(M(t+0.5)) with vec(M̃(t+0.5)) has no

impact on the result iteration sequence {M(t)} (the remaining
part of vec(M(t+0.5)) is determined by the transformation of
column basis), the redefinition is applicable to the following
proof for simplicity.

Without loss of generality, we assume that
〈M(t+0.5),M(B)〉 ≥ 0 and 〈M(t),M∗〉 ≥ 0 as the
sign can be appropriately changed. From Lemma A.1, we
have‖M(t+0.5) −M(B)‖2F

≤[1− 1− γ(r)2

2
(1 +m

(t)
B )m

(t)
B ]‖M(t) −M(B)‖2F

≤[1− 0.5(1− γ(r)2)ω(1 + ω)]‖M(t) −M(B)‖2F (A.22)

where m
(t)
B = 〈M(t),M(B)〉. The second inequality comes

from Lemma A.1 and the assumption made before, i.e.,
〈M(t),M(B)〉 ≥ 〈M(t),M∗〉 − δ(r) ≥ ω. Then, we have

‖M(t+0.5) −M∗‖F (A.23)

≤‖M(t+0.5) −M(B)‖F + ‖M(B)−M∗‖F
≤
√

1− 0.5(1− γ(r)2)ω(1 + ω)‖M(t) −M(B)‖F + δ(r)

≤
√

2− (1− γ(r)2)ω(1 + ω)

2

(
‖M(t) −M∗‖F + ‖M∗ −M(B)‖F

)
+ δ(r)

≤
√

2− (1− γ(r)2)ω(1 + ω)

2
‖M(t) −M∗‖F + 2δ(r).

(A.24)

According to Lemma A.4 and assumption r0 ≥ r∗, we can
finally obtain

‖M̂(t+1) −M∗‖F (A.25)

≤

√
1 +

2
√
r∗√

r0 − r∗
·
√

2− (1− γ(r)2)ω(1 + ω)

2

· ‖M(t+0.5) −M∗‖F

≤

√(
1 +

2
√
r∗√

r0 − r∗

)
·
(

1− (1− γ(r)2)ω(1 + ω)

2

)
· ‖M(t) −M‖F + 2δ(r) (A.26)

=β‖M(t) −M∗‖F + 2δ(r), (A.27)

where

β =

√(
1 +

2
√
r∗√

r0 − r∗

)
·
(

1− (1− γ(r)2)ω(1 + ω)

2

)
with γ(r) < 1 as the ratio of the second largest to largest
eigenvalue of the matrix and appropriate ω ∈ (0, 1). Hence,
we can get the desired contraction result.

After obtaining the contraction relation between the
successive iterates with an additional statistical error, we can
immediately reach our first main result of long-term relation
for the rank recovery error as below.

Proof: According to the quantitative relation between
δ(r), and β, we divide the proof in following two cases:

(1) 1− 2δ2(r)
(1−β)2 < δ(r): It follows naturally that

‖M(0) −M∗‖F =
√

2− 2|〈M(0),M∗〉| (A.28)

≤
√

2− 2δ(r) <

√
2− 2

(
1− 2δ2(r)

(1− β)2

)
=

2δ(r)

1− β
.

(2) 1 − 2δ2(r)
(1−β)2 ≥ δ(r): Under this constraint, first we

prove that for all t ≥ 0, M(t) satisfies the condition
|〈M(t),M∗〉| ≥ δ(r) for Lemma A.5 to hold, then we
will utilize Lemma A.5 iteratively to obtain the result. For
the former purpose, the result for t = 0 has been checked
by the initial condition in Theorem III.2. Now assume
that for t ≥ 1, |〈M(t−1),M∗〉| ≥ δ(r). The analysis will
condition on two further cases:
(a) ‖M(t−1) − M∗‖F ≥ 2δ(r)

1−β : In this
case, from definition ‖M̂(t)‖F ≤ 1 and

|〈M(t),M∗〉| =
|〈M̂(t),M∗〉|
‖M̂(t)‖F

≥ |〈M̂(t),M∗〉|,

combining Lemma A.5 we have√
2− 2|〈M(t),M∗〉| ≤

√
2− 2|〈M̂(t),M∗〉|

(A.29)

= ‖M̂(t) −M∗‖F ≤ β‖M(t−1) −M∗‖F + 2δ(r)

≤ ‖M(t−1) −M∗‖F =
√

2− 2|〈M(t−1),M∗〉|,

which suffices to show |〈M(t),M∗〉| ≥
|〈M(t−1),M∗〉| ≥ δ(r).
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(b) ‖M(t−1) −M∗‖F < 2δ(r)
1−β : Similarly in (a), we can

show that√
2− 2|〈M(t),M∗〉| ≤ β‖M(t−1) −M∗‖F + 2δ(r)

<
2δ(r)

1− β
. (A.30)

It follows that |〈M(t),M∗〉| > 1− 2δ2(r)
(1−β)2 ≥ δ(r).

From all the above, |〈M(t),M∗〉| ≥ δ(r) is proved
under the assumption |〈M(t−1),M∗〉| ≥ δ(r), which
by induction demonstrates |〈M(t),M∗〉| ≥ δ(r) for all
t ≥ 0. Next, by repeatedly applying Lemma A.5 to the
first item in (A.29), we have

‖M(t) −M∗‖F (A.31)

≤‖M̂(t) −M∗‖F
≤β‖M(t−1) −M∗‖F + 2δ(r)

≤β
(
β‖M(t−2) −M∗‖F + 2δ(r)

)
+ 2δ(r)

≤βt‖M(0) −M∗‖F +

t−1∑
i=0

βi2δ(r)

≤βt‖M(0) −M∗‖F +

∞∑
i=0

βi2δ(r)

≤βt‖M(0) −M∗‖F +
2δ(r)

1− β
, ∀t ≥ 0 (A.32)

Together with (A.28) we have obtain our final result.
Next, we will proceed to prove the concentration result

of matrix A below. From [7], we are able to formulate A

and A∗ as A =
1

n

∑n
i=1[yi(vec(Xi) vec(Xi)

>
i ) − I] and

A∗ = E[y(vec(X) vec(X)> − I)] respectively. There will
be some sets of interest of matrices, denoted by SMd1×d2 =
{M ∈ Rd1×d2 | ‖M‖F = 1} and BM(r) = {M ∈ Rd1×d2 |
rank(M) ≤ r}. First, a new cover number of the space of
interest of matrices is proved.

B. Proof of Lemma III.5
Proof: First, we introduce N ∗ε as the maximal ε-separated

set of Sd1×d2M ∩ BM(r), in which any two elements Mx,My

satisfying ‖Mx−My‖F ≥ ε, in other words, they are always
at least ε distance away. The maximal property implies that
there exists no ε-separated subset N ′ε of Sd1×d2M ∩ BM(r)
subject to N ∗ε ( N ′ε . Indeed, the definition of maximal
ε-separated set guarantees that N ∗ε is an ε-net of Sd1×d2M ∩
BM(r). Otherwise there would exist M0 ∈ Sd1×d2M ∩ BM(r)
such that no point in N ∗ε is within ε-far from M0. Therefore,
N ∗ε ∪ {M0} would become the larger ε-separated subset
containing N ∗ε , which contradicts the maximality of N ∗ε . Thus
we need to bound |N ∗ε | = N(ε, r, d1, d2).

Now we proceed to cover the neighborhood of each element
Mi ∈ N ∗ε within balls BM′i = {Mi|‖M′

i −Mi‖F ≤ ε/2}.
Due to the ε-separated property of N ∗ε , for any two elements
M1,M2 ∈ N ∗ε and any M′ ∈ BM′1 , we have ‖M′−M1‖F ≤
ε and the triangle inequality ‖M′−M2‖F ≥ ‖M1−M2‖F −
‖M′ −M1‖F ≥ ε − ε/2 ≥ ε/2. That is to say, any two
differently centered balls are disjoint. On the other hand, we

need to check the volume of the area containing all the balls.
For M = (m)ij = (m1,m2, ...,md2), where mi(1 ≤ i ≤ d2)
is a column vector of M, without loss of generality, we assume
that the last (d2 − r) columns are linear combinations of the
first r columns, and mk =

∑r
l=1 clkml. Then for any matrix

M ∈ Sd1×d2M ∩BM(r) with elements (m)ij as coordinates we
have

d1∑
i=1

r∑
j=1

m2
ij +

d2∑
j=r+1

d1∑
i=1

(
r∑
l=1

cljmil

)2

= 1 (A.33)

We can see actually there are rd1 independent coordinates
(m11,m12, ...,md1r) in quadratic form (A.33). For
the symmetry among {m1k,m2k, ...,md1k}rk=1, when
reformulating (A.33) into the standard form, we obtain
common coefficients for variables {m′1k,m′2k, ...,m′d1k} with
respect to a given k:

r∑
i=1

∑d1
j=1m

′
ji

2

a2i
= 1, (A.34)

which corresponds to a super ellipsoid in Rrd1 where
{{a1}d1i=1, {a2}

d1
i=1, ..., {ar}

d1
i=1} are the lengths of the

principal semi-axes. Similarly, we can derive that the ball
BM′i reduces to an super ellipsoid EM′i

in Rrd1 with principal

semi-axis lengths {{ ε
2
a1}d1i=1, {

ε

2
a2}d1i=1, ..., {

ε

2
ar}d1i=1}.

Then it is shown that all the balls we defined
before are contained in the super ellipsoid E with
{{( ε

2
+ 1)a1}d1i=1, {(

ε

2
+ 1)a2}d1i=1, ..., {(

ε

2
+ 1)ar}d1i=1}

principal semi-axis lengths. Let B0 be the Euclidean ball of
radii 1, since

|E| ≥ |
N(ε,r,d1,d2)⋃

i=1

EM′i
| =

N(ε,r,d1,d2)∑
i=1

|EM′i
|

= N(ε, r, d1, d2) · |EM′i
|, (A.35)

we have

N(ε, r, d1, d2) ≤ |E|
|EM′i

|
=

∏r
i=1

[
(
ε

2
+ 1)ai

]d1
∏r
i=1

( ε
2
ai

)d1 =

(
2

ε
+ 1

)rd1
(A.36)

Similarly, by selecting r basis rows in M it is straightforward
that

N(ε, r, d1, d2) ≤
(

2

ε
+ 1

)rd2
. (A.37)

As it has been postulated that d1 ≤ d2 without any loss of
generality, we have proved (III.7). We continue with (A.37)
by taking M1 ∈ N (ε, r, d1, d2), M2 ∈ Sd1×d2M ∩ BM(r), and
‖M1 −M2‖F ≤ ε

| vec(M1)>S vec(M1)− vec(M2)>S vec(M2)|
=| vec(M1)>S[vec(M1)− vec(M2)]

+ vec(M2)>S[vec(M1)− vec(M2)]|
≤‖S‖‖M1‖F ‖M1 −M2‖F + ‖S‖‖M2‖F ‖M1 −M2‖F
≤2ε‖S‖. (A.38)
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It follows that

| vec(M1)>S vec(M1)| ≥ | vec(M2)>S vec(M2)| − 2ε‖S‖.
(A.39)

Taking the maximum on both sides of (A.39) and noting that

‖S‖ ≥ max
M2∈S

d1×d2
M ∩BM(r)

| vec(M2)>S vec(M2)|,

we can reach the result

max
M1∈N (ε,r,d1,d2)

| vec(M1)>S vec(M1)|

≥ (1− 2ε) max
M2∈S

d1×d2
M ∩BM(r)

| vec(M2)>S vec(M2)|.

C. Proof of Theorem III.6
Lemma A.6. For any fixed M ∈ Sd1×d2M ∩ BM(r), under
Assumption III.4 we have

P
{
| vec(M)>A vec(M)− vec(M)>A∗ vec(M)| ≥ ε

}
≤ e− nε2

10K ,

where K is the constant stated in Assumption III.4.

Proof: Let {yi,Xi}ni=1 be n independent samples drawn
from model y = f(〈M∗,X〉). According to Assumption III.4,
we have bounded yT (X). On the other hand, we have

vec(M)>A vec(M) = vec(M)>
∑n
i=1[yiTi(X)]

n
vec(M)

and

vec(M)>A∗ vec(M) = vec(M)>E[yT (X)] vec(M) (A.40)

Combining Assumption III.4 and appendix of [44], according
to the Bernstein-type inequality for independent random
variables [50], for any ε > 0 we can obtain

P{| vec(M)>(A−A∗) vec(M)| ≥ ε} (A.41)

=P
{∣∣∣∣∑n

i=1[yiTi(X)]

n
−E(yT (X))

∣∣∣∣ ≥ ε} ≤ exp

(
− nε2

10K

)
.

Hence, we complete the proof.
Using the two lemmas introduced above, we are ready to

complete the proof of the third main result below.
Proof of Theorem 3.5: As the rank restricted norm

ρ(A − A∗, r) = sup
M∈Sd1×d2M ∩BM(r)

| vec(M)>(A −
A∗) vec(M)| is derived from the union bound of
| vec(M)>(A − A∗) vec(M)|, we first fix the subset
P ⊂ {1, ..., d2}, we define

Bd2P = {M ∈ Sd1×d2M |the basis columns are indexed by P}.

Similarly we can also define

Bd1P = {M ∈ Sd1×d2M |the basis rows are indexed by P}.

For any ε > 0 and d2 (choosing column vectors as basis), we
define events:

Ωd2P :=

 sup
M∈Sd1×d2M ∩Bd2P

| vec(M)>(A−A∗) vec(M)| ≥ 2ε

 ,

ΩM :=
{
| vec(M)>(A−A∗) vec(M)| ≥ ε

}
.

Let N d2
P be the

1

4
-net of Sd1×d2M ∩ Bd2P , from Lemma III.5,

we can see that in case of Ωd2P , sup
M∈Nd2P

| vec(M)>(A −

A∗) vec(M)| ≥ 1

2
sup

M∈Sd1×d2M ∩Bd2P
| vec(M)>(A −

A∗) vec(M)| ≥ 1

2
· 2ε = ε, also considering the fact that N d2

P
is compact and the supremum can be reached by elements in
N d2
P , hence we can obtain

Ωd2P ⊂

 sup
M∈Nd2P

| vec(M)>(A−A∗) vec(M)| ≥ ε


⊂
{
∃M0 ∈ N d2

P , s.t. | vec(M0)>(A−A∗) vec(M0)| ≥ ε
}

⊂
⋃

M∈Nd2P

{
| vec(M)>(A−A∗) vec(M)| ≥ ε

}
.

(A.42)

Letting |N d2
P | = r and using Lemma III.5 and (A.6), we have

P{Ωd2P } ≤
∑

M∈Nd2P

P{ΩM} (A.43)

≤|N d2
P | · exp

(
− nε2

10K

)
≤ 9rd1 · exp

(
− nε2

10K

)
. (A.44)

Similarly, we can prove

P{Ωd1P } ≤ 9rd2 · exp

(
− nε2

10K

)
. (A.45)

Next we generalize the result to an arbitrary subset P ⊂
{1, .., d2} or P ⊂ {1, .., d2} with cardinality r. We define
P1 = {1, ..., d1}, P2 = {1, ..., d2}, and

Ω′P :=

 sup
M∈Sd1×d2M ∩BM(r)

| vec(M)>(A−A∗) vec(M)| ≥ ε

 .

We can obtain

P{Ω′P} ≤
∑

K∈{P1,P2},P⊂K

P {ΩP} (A.46)

≤ 2

(
max(d1, d2)

r

)
max(P{Ωd1P },P{Ω

d2
P })

≤ 9rmax(d1,d2)

(
max(d1, d2)

r

)
· 2 exp

(
− nε2

10K

)
. (A.47)

Setting ε =

√
Krmax(d1, d2) log max(d1, d2)

n
, from the

sufficient largeness assumption of n implying
ε2

K2
≤ ε

K
and(

max(d1,d2)
r

)
∼
(

max(d1,d2)
r

)r
, we obtain

ρ(A−A∗, r) = Op

(√
rmax(d1, d2) log max(d1, d2)

n

)
,

(A.48)

which completes the proof.
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PROOF OF REMARK III.3

Proof: When n = Ωp

((
1+c

δλ+(1+c)λ

)2
rmax(d1, d2) log max(d1, d2)

)
for some 0 < c < 1, by the definition of ρ(E, r)

and Theorem III.6, we have

ρ(E, r) <
δλ+ (1 + c)λ

1 + c
, (A.49)

where we assume the constants in notations Ωp and Op to be 1. By the definition of γ(r), we obtain

γ(r) < c. (A.50)

Furthermore, if √(
1 +

2
√
r∗√

r0 − r∗

)
·
(

1− (1− c2)ω(1 + ω)

2

)
< 1 (A.51)

holds, we can guarantee β < 1. (A.51) can be equivalently written as

g(ω) = ω(ω + 1) >
4(

2 +
√

r0
r∗ − 1

)
(1− c2)

. (A.52)

Note that g(ω) as a function of ω is increasing on (0, 1). Hence, to make the appropriate ω ∈ (0, 1) exist, we require(
2 +

√
r0
r∗
− 1
)
(1− c2) > 2. (A.53)

After simplification we obtain

r0 >

(
1 +

( 2

1− c2
− 2
)2)

· r∗, (A.54)

which concludes the proof.

ADDITIONAL QUANTITATIVE RESULTS

In this section, we provide all the reconstruction errors in Figure 7 to demonstrate the fair performance of our algorithm.

TABLE III: Additional comparison of reconstruction errors with other related works.

Reconstruction Error STPower FGD SVD SVDs MAPLE

digit, f2 0.514 1.431 0.897 1.352 1.368
digit, f3 0.372 0.814 1.374 1.403 0.898
airplane, f2 0.582 1.273 1.273 1.416 1.389
airplane, f3 0.417 1.273 1.368 1.425 1.274
car, f2 0.588 1.376 1.457 1.457 1.457
car, f3 0.363 1.457 1.491 1.491 1.457
horse, f2 0.380 1.434 1.462 1.205 1.462
horse, f3 0.372 1.462 1.453 1.429 1.462

We measure the quantitative performance of the algorithms using the
reconstruction error, i.e., ‖M̄ −M∗‖F , where the Frobenius norm of each
matrix, i.e., M̄ and M∗ has been normalized to 1.


